If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+4x-33=0
a = 6; b = 4; c = -33;
Δ = b2-4ac
Δ = 42-4·6·(-33)
Δ = 808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{808}=\sqrt{4*202}=\sqrt{4}*\sqrt{202}=2\sqrt{202}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{202}}{2*6}=\frac{-4-2\sqrt{202}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{202}}{2*6}=\frac{-4+2\sqrt{202}}{12} $
| 4(4x+4)=-5(4x-4)-3x | | 4p+19–7p=–12p–8 | | 14x+8=218 | | 5(f+2)-3=22 | | 3m–3=6 | | H(100)=-16t^2+100t | | 3v=24+7v | | 3x-2=135 | | 7x+(-21)=12 | | (10x+6)/(2)=5x+3 | | 5(x-2)=4x-1+2x | | x-4(x+6)=16(2x+4) | | 4^{-2n}=16 | | 0.33(9x+2)=4+0.66(6x+4) | | 6(1.5-5b)=26 | | 3r-5r=-3 | | 33-5x=37–12x. | | (x-5)^2-3=21 | | k+22+6k=34 | | (x/4)+54=-26 | | (z+3)(z=4)=0 | | -9-7r=-37 | | 3x=7/9 | | x^2-2x=48x2−2x=48 | | 5m+15-20m-10=80 | | -6/7=4/5x | | 8-1x+2=2x+10 | | 4(4x-4)=-5(4x-4)-3x | | 10+1.30x=20+0.90 | | r0.29=6.2 | | 15x-34=161 | | x+⅓=⅔ |